Combining multiple biomarker models in logistic regression.
نویسندگان
چکیده
In medical research, there is great interest in developing methods for combining biomarkers. We argue that selection of markers should also be considered in the process. Traditional model/variable selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a novel model-combining algorithm for classification in biomarker studies. It works by considering weighted combinations of various logistic regression models; five different weighting schemes are considered in the article. The weights and algorithm are justified using decision theory and risk-bound results. Simulation studies are performed to assess the finite-sample properties of the proposed model-combining method. It is illustrated with an application to data from an immunohistochemical study in prostate cancer.
منابع مشابه
به کارگیری مدلهای رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی
Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...
متن کاملStepwise Induction of Logistic Model Trees
In statistics, logistic regression is a regression model to predict a binomially distributed response variable. Recent research has investigated the opportunity of combining logistic regression with decision tree learners. Following this idea, we propose a novel Logistic Model Tree induction system, SILoRT, which induces trees with two types of nodes: regression nodes, which perform only univar...
متن کاملMatrix Sequential Hybrid Credit Scorecard Based on Logistic Regression and Clustering
The Basel II Accord pointed out benefits of credit risk management through internal models to estimate Probability of Default (PD). Banks use default predictions to estimate the loan applicants’ PD. However, in practice, PD is not useful and banks applied credit scorecards for their decision making process. Also the competitive pressures in lending industry forced banks to use profit scorecards...
متن کاملGroundwater Potential Mapping Using the Integration of the Weight of Evidence and Logistic Regression Models (A Case Study: Nahavand)
Today, supplying water to meet the sustainable development goals is one of the most important concerns and challenges in most countries. Therefore, identification of the areas with groundwater potential is an important tool for conservation, management and exploitation of water resources. The purpose of this research was to prepare the potential groundwater map in Nahavand, Hamedan Province, us...
متن کاملمقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2008